Deformation of the Manazuru Knoll in Sagami Bay, central Japan, associated with subduction of the Philippine Sea plate

نویسندگان

  • Tetsuo No
  • Narumi Takahashi
  • Seiichi Miura
  • Mikiya Yamashita
  • Yukari Kido
  • Shuichi Kodaira
چکیده

In January 2010, we conducted a multichannel seismic (MCS) reflection survey in Sagami Bay. As a result of this study, the deformation of the Manazuru Knoll, which is located near the plate boundary, was obtained. The Manazuru Knoll was formed by an asymmetric anticline, and the knoll has a geometry that is bent in a shape similar to that of a crank. The anticlinal axis, which was confirmed by MCS data, lies along the anticlinal axis shown on the bathymetric map, and the axis is bent first to the southeast and then to the east. It is estimated that the easternmost part of Manazuru Knoll has reached the vicinity of Miura Canyon. The offset of the strike of the anticline axis is approximately 7 km. A reverse fault related to the formation of Manazuru Knoll was identified in the southwestern side of the knoll. It is hypothesized that this reverse fault formed as a result of shortening of the structure, which occurred when the relative motion of the Philippine Sea plate was acting in a perpendicular direction close to the Manazuru Knoll. Therefore, it is estimated that the relative motion of the Philippine Sea plate was almost oblique or parallel to the anticlinal axis of Manazuru Knoll and that the eastern end of Manazuru Knoll was bent into a crank shape by strike-slip motion. This suggests that a part of Manazuru Knoll, located to the west of the plate boundary, moved to the northwest. Finally, it is assumed that the sediments of Miura Canyon and Sagami Knoll have been overlapping on the eastern end of Manazuru Knoll.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone

[1] The newly developed wave equation poststack depth migration method for receiver function imaging is applied to study the subsurface structures of the Japan subduction zone using the Fundamental Research on Earthquakes and Earth’s Interior Anomalies (FREESIA) broadband data. Three profiles are chosen in the subsurface imaging, two in northeast (NE) Japan to study the subducting Pacific plate...

متن کامل

Nonvolcanic deep tremor associated with subduction in southwest Japan.

Deep long-period tremors were recognized and located in a nonvolcanic region in southwest Japan. Epicenters of the tremors were distributed along the strike of the subducting Philippine Sea plate over a length of 600 kilometers. The depth of the tremors averaged about 30 kilometers, near the Mohorovic discontinuity. Each tremor lasted for at most a few weeks. The location of the tremors within ...

متن کامل

Earthquake Mechanisms at the Head of the Philippine Sea Plate beneath the Southern Kanto District, Japan

An analysis has been made of the rupture mechanism of two earthquakes which occurred in the vicinity of the oblique collision beneath the tip of the descending Philippine Sea plate and the Pacific plate beneath Chiba, Japan. The M=6.5 1956 Chiba earthquake occurred in a dense nest of seismicity at a depth of between 70 and 80km beneath Chiba city, and may represent deformation at the tip of the...

متن کامل

Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea Plate

The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred ~ 100 km north of Izu peninsula at depths of 40–90 km and discusses seismogenesis in the ...

متن کامل

Anelastic properties beneath the Niigata–Kobe Tectonic Zone, Japan

We estimate the three-dimensional (3D) P-wave attenuation structure beneath the Niigata–Kobe Tectonic Zone (NKTZ), central Japan, using high-quality waveform data from a large number of stations. The obtained results confirm the segmentation of the NKTZ into three regions, as suggested by 3D seismic velocity models, and reveal characteristic structures related to surface deformation, shallow su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014